Friedreich’s Ataxia: A Neuronal Point of View on the Oxidative Stress Hypothesis
نویسندگان
چکیده
A prominent feature of Friedreich's ataxia (FRDA) is the neurodegeneration of the central and peripheral nervous systems, but little information is available about the mechanisms leading to neuronal damage in this pathology. Currently, no treatments delay, prevent, or reverse the inexorable decline that occurs in this condition. Evidence of oxidative damage has been demonstrated in Friedreich's ataxia, and this damage has been proposed as the origin of the disease. Nevertheless, the role of oxidative stress in FRDA remains debatable. The lack of direct evidence of reactive oxygen species overproduction in FRDA cells and tissues and the failure of exogenous antioxidants to rescue FRDA phenotypes questions the role of oxidative stress in this pathology. For example, the antioxidant "idebenone" ameliorates cardiomyopathy in FRDA patients, but this therapy does not improve neurodegeneration. To date, no known pharmacological treatment with antioxidant properties cures or delays FRDA neuropathology. This review reports and discusses the evidence of oxidative stress in FRDA and focuses on the existing knowledge of the apparent ineffectiveness of antioxidants for the treatment of neuronal damage.
منابع مشابه
Catalase overexpression rescues Friedreich’s Ataxia mouse models from oxidative stress and mitochondrial iron-loading
Friedreich’s ataxia (FRDA) is an inherited neurodegenerative disorder characterized by gait disturbance and speech problems. Disease pathology is characterized by progressive damage and loss of nerve tissue particular to the peripheral nerve system. FRDA is caused by the relative deficiency of a mitochondrial protein frataxin resulting from an expanded intronic GAA triplet repeat. While the pre...
متن کاملA novel approach of human embryonic stem cells therapy in treatment of Friedreich’s ataxia
Introduction: Friedreich’s ataxia (FRDA) is an autosomal recessive inherited disease that damages nervous system and impairs muscle coordination. FRDA usually begins in childhood and is caused by expanded GAA triplet repeat within the first intron of the frataxin (FXN) gene leading to reduced level of mitochondrial protein frataxin. There is no effective treatment for FRDA. If stem cells are tr...
متن کاملStem Cells from Wildtype and Friedreich’s Ataxia Mice Present Similar Neuroprotective Properties in Dorsal Root Ganglia Cells
Many neurodegenerative disorders share a common susceptibility to oxidative stress, including Alzheimer's, Parkinson Disease, Huntington Disease and Friedreich's ataxia. In a previous work, we proved that stem cell-conditioned medium increased the survival of cells isolated from Friedreich's ataxia patients, when submitted to oxidative stress. The aim of the present work is to confirm this same...
متن کاملMitochondrial DNA haplogroups influence the Friedreich's ataxia phenotype.
F riedreich’s ataxia, an autosomal recessive neurodegenerative disorder, is the most common hereditary ataxia among white people. The disease is characterised by gait and limb ataxia, dysarthria, absent tendon reflexes, Babinski’s sign, impairment of position and vibratory senses, scoliosis, and pes cavus. Cardiac manifestations are prominent in some cases. Diabetes mellitus or carbohydrate int...
متن کاملTORC1 Inhibition by Rapamycin Promotes Antioxidant Defences in a Drosophila Model of Friedreich’s Ataxia
Friedreich's ataxia (FRDA), the most common inherited ataxia in the Caucasian population, is a multisystemic disease caused by a significant decrease in the frataxin level. To identify genes capable of modifying the severity of the symptoms of frataxin depletion, we performed a candidate genetic screen in a Drosophila RNAi-based model of FRDA. We found that genetic reduction in TOR Complex 1 (T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2014